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A systematic construction of (1 + 1)-dimensional field theoretic models with exactly solvable
excitation spectrum about its classical static finite-energy configuration is presented. The
approach is based on the concept of shape-invariant potentials in supersymmetric quantum
mechanics. Stable and unstable field models are taken into account. In the case of stable
models two new field potentials are found, which give rise to exactly solvable fluctuation
equations about their topologically non-trivial classical solutions. In the case of unstable
models two new families of field potentials with fractional powers and one with a logarithmic
term are found.  © 1997 Academic Press

1. INTRODUCTION

In the last two decades, field theoretic models with classical finite-energy solu-
tions have attracted much attention [1]. In higher space dimension the number of
such classical solutions are very limited and only a few are known so far. The best
known examples are the non-linear O(3) model in (24 1) dimensions and the
‘tHooft-Polyakov monopole in (3 + 1) dimensions. However, in (1 + 1) dimensions
a variety of classical finite-energy solutions are known. The most prominent
examples are the soliton solution of the sine-Gordon model and the kink solution
of the ¢*-model. These topologically non-trivial solutions also play an important
role in tunneling phenomena of bistable and unstable quantum systems [2, 3].
Solitons are also an essential ingredient of non-linear wave equations such as the
Korteweg—de Vries and non-linear Schrédinger equation [4, 5].

These classical finite-energy solutions occur in quantum field theories with spon-
taneously broken symmetry. Also under certain circumstances, they may be inter-
preted as quantum extended-particle states. The stability of these states is analyzed
by considering the (quantum-) fluctuations about the classical solution [6]. If we

* Permanent address: Physics and Applied Mathematics Unit, Indian Statistical Institute, Calcutta
700035, India.

302
0003-4916/97 $25.00

Copyright © 1997 by Academic Press
All rights of reproduction in any form reserved.



(1 +1)-DIMENSIONAL FIELD MODELS 303

restrict ourselves to the static limit, that is, time-independent classical solutions,
then the equation determining the stability of these solutions is a Schrodinger-
type equation. The eigenfunctions of the corresponding fluctuation operator are
then interpreted as quantum excitations of the extended particle. Clearly, one is
interested in this particle spectrum.

It is the aim of this paper to construct (1 + 1)-dimensional field theory models
which admit topological non-trivial classical solutions and whose stability equation
is exactly solvable. This problem is, of course, not entirely new and related ideas
have been studied before [7, 8]. Similar attempts are also due to Kumar [9] and
Boya and Casahorran [10]. Kumar starts with the stability equation associated
with the ¢*-kink and, using ideas of supersymmetric (SUSY) quantum mechanics.
constructs a new stability equation with known spectral properties. However, the
corresponding field potential could not be put into a closed form. On the other
hand Boya and Casahorran start with a given form of field models with a poly-
nomial interaction and use SUSY methods to find new kinks with exactly known
particle spectrum. Fluctuation equations within the framework of SUSY quantum
mechanics (both on the real line as well as on the unit circle) have also been
considered by Kulshreshtha, Liang and Miller-Kirsten [117.

We do not limit ourselves to any particular form of the field potential. In fact.
in the present approach we start with a given family of fluctuation equations, whose
spectral properties (both the discrete as well as the continuous spectrum) are
explicitly known. In this respect ideas of SUSY quantum mechanics [12, 137 will
be the guiding line. Then we try to construct the corresponding field potential in
closed form. This will only be possible for certain members of the family of fluctua-
tion operators. We will consider models which posses stable and unstable classical
configurations. In the later case, however, we limit ourselves to those unstable
configurations, whose fluctuation operator has only one unstable mode, that is. the
fluctuation operator has one negative eigenvalue. In this context only the discrete
spectrum of the fluctuation operator is relevant. Hence, throughout this paper we
will draw our attention on the discrete spectrum of the fluctuation operator. To
simplify the program further we shall consider only static finite-energy solutions.

This paper is organized as follows. In the next section we will briefly discuss the
static finite-energy solutions of a classical Lorentz-invariant field model of a scalar
field in (14 1) dimensions. Particular attention is given to the stability of these
solutions. The corresponding stability equation is identical in form with a one-
dimensional stationary Schrédinger equation.

As already mentioned, we are interested in finding field models for which the
stability equation have known spectral properties. Therefore, as an ansatz we will
consider a particular family of potentials [ 14] for which the Schrodinger equations
on the real line are exactly solvable. This family, in essence, was constructed by
Infeld and Hull [15] via the factorization method which goes back to Schrédinger
[16]. Within the SUSY quantum mechanics this factorization has been recon-
sidered and is now known under the name of shape-invariant potentials [14].
In Section III we will review SUSY quantum mechanics and the concept of
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shape-invariance, which provides actually four families of exactly solvable
Schrodinger problems on the real line.

In Section IV these four families are then systematically investigated to obtain
closed-form expressions of the corresponding field model. Besides the well-known
sine-Gordon, ¢* and double-quadratic model [1, 5] we find two new field poten-
tials whose excitations about the classical finite-energy solution are exactly known.

In Section V we start with the same four families of shape-invariant potentials
and construct unstable field theoretic models with exactly known particle spectrum.
Here we will find two new families of field potential with (in general) fractional
powers of the field. As special cases they contain the inverted double-well, a ¢°
and a cubic field potential. In addition we also find a model with field potential
containing a logarithmic term.

II. CLASSICAL FINITE-ENERGY CONFIGURATIONS

Let us now consider (14 1)-dimensional field models of a scalar field ¢(x, ¢)
which exhibit classical finite-energy solutions. These models are characterized by
the Lorentz-invariant Lagrangian density

109N 1 /09N>

g"i(a?) —5(@ — U@, 1)

where U is the field potential. The corresponding classical equation of motion reads
d*¢ 0% ou

— == 22

orr  ox? d¢ (2.2)

With a solution of this equation one can associate a conserved (time-independent)

energy functional
+oo 1 /0p\> 1 [0¢\?
E[4]:=| dxk(a—‘f) +§<£> +U(¢)] (2.3)

— 0

As we are only interested in configurations with finite energy we are led to the
boundary conditions 0¢/0t -0, d¢/0x -0 and U(¢)— 0 as x— +oco. Conse-
quently, such solutions approach a constant value at infinity:

¢, := lim ¢(x,1) with U(¢,)=0. (2.4)

X — + oo

These localized classical solutions are called solitary waves if they can be put into
the form ¢(x, #) = f(x —vt). Note that solitary waves can be obtained from static
(i.e. time-independent) solutions ¢,, of (2.2) via a Lorentz-boost. Because of this,
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from now on we will draw our attention exclusively to those localized static solu-
tions obeying

1 <d¢.s'r

() = v, 25)

which follows from (2.2) via integration. Note that the integration constant
necessarily vanishes due to the finiteness of the energy functional

The dynamical stability of the static solution can be investigated by looking at
its fluctuations ¢ with lim, _ , . y(x)=0:

EL8,+ ¥ 1~ E[4,]+SEy ] 26)
here
| e 4> 8U
ETWY =3 [ x| S5+ 5 0t o) 27)

Hence, the stability of ¢, is controlled by the eigenvalues of the fluctuation operator

d> oU
gty Bl (28)

To be more precise, let {i/,} be the complete set of eigenfunctions of H with eigen-
values {u,}. Then the variation of the energy functional is given by

OELWI=1X a2 u,  a=] dey o) i) (29)

Hence, the static solution is stable if all eigenvalues of H are non-negative, u, > 0.
If there exists at least one negative eigenvalue then ¢, will be an unstable configu-
ration. Note that for the continuous part of the spectrum the sum in (2.9) should
be replaced by an appropriate integral. Throughout this paper we will focus our
attention only on the discrete part of the spectrum of the fluctuation operator (2.8).

Let us also mention that A always has a vanishing eigenvalue ¢ = 0 due to trans-
lational invariance. The corresponding eigenstate is given by

.

lﬁ#=0(x)oc dx

(x). (2.10)

As already stated earlier, the aim of this paper is to construct field models, that
is, finding the field potential U, such that the eigenvalue problem for the fluctuation
operator is exactly solvable. Due to the fact that H has a vanishing eigenvalue,
methods developed for SUSY quantum mechanics seem to be most profitable for
that purpose.
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HI. BASICS ON SUSY QUANTUM MECHANICS

Witten’s model [17, 13] of SUSY quantum mechanics consists of a pair of
standard Schrodinger-Hamiltonians H .,

d2
H =-—=+ V (x)=A"A, (3.1)

dx

2
H, = —E+ V., (x)=AA", (3.2)

where
2 t d

Vi(x):=W(x)+ W(x), A :z;l;+ Wix). (3.3)

The Witten model is thus uniquely characterized by the so-called SUSY potential W,
which is a real-valued function of the cartesian degree of freedom xeR. For
unbroken SUSY one of these Hamiltonians is required to have a ground state with
vanishing eigenvalue. Let us assume that this ground state, denoted by v, belongs
to H_, that 1s, Ay; =0. This state can explicitly be expressed in terms of the
SUSY potential,

Vo (x) :=Nexp{—r iz W(z)} (3.4)

Because of SUSY, the set of the strictly positive eigenvalues of H_ forms the
complete spectrum of H, . To be more explicit, let us assume, that the discrete
spectrum of H_ is given by the set {4,},_o, ., Where 1,=0<4i, < - <4,
with corresponding eigenstates ¥, v, .., ¥ , - Then the discrete spectrum of H
is given by {4,, .., 4,} with eigenstates y,", .., .-, which may be obtained from

p?

those of H_ via the SUSY transformation (n=1, 2, ..., p)

V() =ﬁAwn(x), V(%) =\/%A*w:<x). (3.5)

Similar relations also hold for a possible continuous spectrum.

Let us now assume that we have a family of SUSY potentials { W(a,, x)},
s=0,1,2, .., p, which differ only in their values of some potential parameter a, and
the corresponding ground states (3.4) are all normalizable. That is, SUSY remains
unbroken for all s=0, 1, .., p. If now the corresponding set of partner potentials
{V.(a,x), V_(a,,x)} obeys the shape-invariance condition [14] ¥V (a,, x)=
V_(as, 1, x)+R(a,.,), where R(a,,,) does not depend on x, then the eigenvalue
problems for the corresponding Schrédinger Hamiltonians are exactly solvable due
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TABLE 1

Known Shape-Invariant SUSY Potentials on the Real Line

Case SUSY potential Parameters
I W(x)=atanhx+b/coshx a>0

I W(x)=atanh x + b/a a>b=0
111 W(x)=a—be " a, b>0

v W(x)=ax a>0

to the SUSY transformation (3.5). For example, the eigenvalues and eigenstates for
H_with V_=V_(a,,x) are given by [13]

n AT A‘i‘
i,=Y R(a,), N . A B (a,, x), 3.6
n xgl (a.s) Eb" (X) \/A”_AO \/in_in_l zI[/() (a x) ( )

where

Y, (a,, x)=N exp {—Lj dz Wa,, x)}, AT = —dii—l— Wia,, x). (3.7)

In Table I we list all four, so far known, SUSY potentials on the real line, which
give rise to a family of shape-invariant partner potentials [18]. Table II sum-
marizes some spectral properties of #_ for the SUSY potentials listed in Table 1.
Note that for case 1 and II only the parameter choice » =0 will be relevant for the
discussion below. For further details we refer to [13].

In the following section we will identify H_ with the fluctuation operator for a
classical finite-energy solution. Thus the list in Table I provides us with exactly
solvable models for the fluctuation operator. The aim of this paper is to obtain the
corresponding field potential U(¢) in closed form. Clearly, we do expect that this
will be possible only for a few parameter values a and b of the shape-invariant
SUSY potentials given in Table 1.

TABLE 11

Discrete Eigenvalues 2, and the Ground-State Wave Functicn W, (a, x) for the
Hamiltonian /7 Associated with the SUSY Potentials Given in Table 1

Case Parameters A, W (a, x)/N
I+1I a>0, b=0 a—(a—n? n=0,1,., <a cosh ™% x
I a, H>0 azi(a_”)lj ”207 l, . <a e ay exp{ 7,}(37‘\—}

v a>0 Zna, n=0,1,2, . exp{ —ax?/2}
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IV. CONSTRUCTION OF STABLE FIELD POTENTIALS

In this section we will construct stable field models with exactly solvable stability
equation such that the field potential can be given in a closed form. We will start
with a given shape-invariant SUSY potential taken from Table I and evaluate
the corresponding SUSY ground state for H_ according to (3.4). Identifying the
fluctuation operator (2.8) with H , H=H , this SUSY ground state is also an
eigenstate of H with vanishing eigenvalue 1,=x,=0. In a second step we then
determine the explicit form of the static finite-energy solution via integration
of (2.10),

bu(x)=a | dzunlz) + P, (4.1)

where « and f are some real-valued constants. This step provides us with a first
criterion for the parameters @ and b of the SUSY potential (cf. Table I), because not
for all possible values an explicit integration may be performed. From this solution
one can finally find the field potential via the relation (2.5),

1 /dg,\*
0o =5 (52 42)

dx

Clearly, for this one needs to find x =x(¢,,). Hence, a second criterion appears.
Only for those cases one is able to find U(¢,,), which still does not provide the full
field potential. Note that ¢, (4 _, ¢, ). However, once the function U(¢,,) is know
explicitly as a function of ¢, the full potential may simply be found via continuation.
This, of course, may be done by some educated guess.

The above mentioned criteria are very restrictive and will lead to only a few
parameter sets {a, b} for which the program can actually be carried out. Let us
now investigate the four SUSY potentials given in Table L.

A. Cases I and I

We will consider the cases I and II simultaneously as they give rise to the same
field models. The zero modes are easily calculable for any value of the parameters
a and b:

exp{ —b arcsin(tanh x)}

Wo(x)=N cosh® for Case,
(4.3)
Yo(x)=N M for Case II.
cosh” x

However, the explicit integration (4.1) may in both cases only be performed for
integer ¢ and vanishing b. Because of the latter condition these two cases become
identical. The resulting static solutions are for example given in Eq. (2.40) of the
paper by Boya and Casahorran [10]. In essence, these solutions are polynomials in
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tanh x and 1/cosh x for even and odd a, respectively. The degree of these poly-
nomials is a— 1. Obviously, only for the lowest values of @ one can hope to
find x = x(¢,,) explicitly. Below we will present our results for a=1, 2, 3, 4 and a
limiting case. The corresponding discrete eigenvalues of the fluctuation operator are
given in Table II because u, = 4, and the eigenmodes may be derived from the state
Y, (a—n, x) (see Table II) via (3.6) as ¥, =y .

(1) The sine-Gordon model, a=1: In this case the static solution is given by
the well-known soliton

d,(x) =2 arcsin(tanh x), ¢, =+m (44)

if we set aN=2 and f=0. The corresponding field potential reads U(¢,,)=
2/cosh? x =2(1 —sin*(¢,,/2)) and its analytical continuation beyond ¢, leads to the
well-known sine-Gordon model

Ul¢)=1+cos(d). (4.5)

(i1) The ¢*-model, a=2: Here the static solution is also well known and
reads for aN=1 and f=0

¢.(x)=tanh x, ¢, =+1L (4.6)

For the field potential we find U(4,,) = 1/2 cosh® x = 1(1 — ¢%)? which leads upon
analytic continuation to the ¢*-model

Ulg)=3(1—¢%)" (4.7)

(1) The unresolvable case a=3: For the parameter value ¢ =3 the static
solution explicitly reads (aN =2, f=0)

tanh x

¢, (x) + arcsin(tanh x), ¢, =+ (4.8)

SRR

cosh x

Here it is impossible to solve this equation for x = x(¢,,) and therefore, the field
potential can only be given implicitly via (4.8)

2

U¢)=———F-=U—9¢,). (4.9)
cosh® x

Only for small and very large values of x one can determine the analytic behavior
of the field potential near its local maximum and its minima,

Up2-3¢  for gl <l
(4.10)

U(¢)z2<¢47g> for ¢~ i%.
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(iv) A new model for a=4: Whereas for a=3 it was impossible to find an
explicit analytical expression for the field potential, it is still possible in the case
a=4. Here the static solution reads for aN =1 and f=0

¢,(x)=tanh x — L tanh’ x, ¢ =43 (4.11)

This cubic equation can be solved for tanh x, which will be sufficient to calculate
the field potential explicitly. The physical allowed solution is

| 3 4
tanh x = —2 cos (5 arccos (i 4’5”) + ;), (4.12)

where arccos z € [0, n]. The field potential reads

1

4
Ug,,) = 3 (I — tanh? x)* :% { 1 —4 cos? <~§ arccos (3 (;SS,) +4_7z>} : (4.13)

2 3

This potential may, for example, periodically be continued beyond ¢, by setting
U(¢+4/3)=U(¢) and

U(¢) =% { 1 +2cos (% arccos (g (,b) + %EH ' (4.14)

for —2/3<¢<2/3.

(v)  The double-quadratic model as limiting case: Finally, let us consider
the SUSY potential W(x)=a sgn(x), a >0, which may be considered as a limiting
case of the previous ones in the sense that W(x) =lim, ,  atanh(yx). Note that
V. (x)=a’+2ad(x) for which the eigenvalue problem is easily solvable [19].
It has only one bound state and the corresponding ground-state wave function
reads yro(x)=Ne “! from which the finite-energy solution immediately follows
(eN=1, p=0):

) =TT (] —emall) g =4l (4.15)

Q=

a

The corresponding field model is that for the well-known double-quadratic potential
(see, for example, Ref. [5, p. 412])

Ul¢) =3(1—alg])’. (4.16)

In Figs. 1 and 2 for all of the above solvable cases the curves for the static finite-
energy solutions and the field potentials are given, respectively.
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(b.sl (1)

4 | I L 1 L 1 I | I
-0 -8 -6 -4 -2 0 2 4 6 8 10
p

F1G. 1. The static solutions for the stable field models corresponding to cases I and I1. Shown are
the classical static finite-energy solutions for the sine-Gordon model a=1 (—), the ¢*model a=2
(———). the new potential (4.14) obtained for a=4 (---) and for the double-quadratic case (4.15) with

a=03(---).

B. Cases III and IV

Now we will investigate the shape-invariant SUSY potential belonging to case III
and IV of Table I. For case III the SUSY ground state is given in Table II. In this
case an analytic expression for the static solution can only be found if we set a=1:

1

1
dulx) =7 expi—be™},  ¢_=0, o=1 (4.17)

here we have chosen a =b/N and f =exp{ —b} for convenience. Note that we have
no restriction on the potential parameter b. The corresponding field potential as a
function of the static solution reads

Ul¢,)=3(e” " exp{ —be™"})> =147 In*(b4,,). (4.18)

Ul¢)

FiG. 2. The field potentials for the same cases as in Fig. 1.
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z and U(¢)

-6 -4 0
¢y and ¢

FiG. 3. The static solution (solid line} and the corresponding stable field potential (dashed line) for
case IIT with »=0.5.

This potential may easily be continued beyond the field values taken by ¢,,. Here
we simply choose the absolute value in the argument of the logarithm. This leads
to a new family of field models

Ulg)=3¢"In*d14]), b>0. (4.19)

In Fig. 3 we present the shape of the static classical finite-energy solution together
with the field potential for 6=0.5. The discrete eigenvalues of the fluctuation
operator are given in Table II. Actually, because of a=1, there exists only one,
namely the ground-state cigenvalue uy,=4,=0.

Finally, for the last case IV one cannot find a closed form expression for the field
potential because here the static solution is given by an error function (x=1/N,

p=0),
Polx) = \/% Erf(x \/a/2), (4.20)

and does not allow to solve for x = x(¢,,).

V. CONSTRUCTION OF UNSTABLE FIELD POTENTIALS

The aim of this section is to obtain unstable field models whose stability equation
is also exactly solvable. Unstable means that there exists at least one negative eigen-
value of the fluctuation operator (2.8). Here we will construct only those models
which have exactly one unstable mode. In other words, the fluctuation operator has
one negative eigenvalue u,<0. Its first excited state belongs to the translational
mode having the vanishing eigenvalue u, =0.
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Our construction principle is also based on SUSY quantum mechanics. Here,
however, we have to identify the fluctuation operator H with the shifted SUSY
Hamiltonian, H=H_ 4+ u,=H —,. Consequently their eigenvalues are related
by u,=4,+u, and the corresponding eigenstates are identical y, = . Now the
first excited state Y, =y, of H will serve to find the static solution in analogy
to (2.10). This state is obtained from the SUSY ground state of the partner
Hamiltonian via the SUSY transformation (3.6):

Vi) = A5y (ay, x). (5.1)

Hence our starting point is a pair of shape-invariant SUSY potentials { W(a,, x),
Wi(a,, x)}. In terms of these SUSY potentials the above relation explicitly reads

W1(x) = N[ W(a,, x) + Wlag, x)] exp {—fo dz Wia,, z)}. (5.2)

Then the static solution is given by

b(x)=a dzg(z)+p (53)

and from this the field potential is obtained via (2.5).

As in the previous section, we have to face the same two conditions for the
parameters a=a, and b. These are the explicit integrability of (5.3) and the
solvability of x =x(¢,,). Here, however, it turns out that these conditions are not
as restrictive as in the case of stable field models. In particular the second condition
will not lead to any further restrictions. Again we will investigate the four SUSY
potentials listed in Table L.

A. Cases I and 11

As before, we will consider cases I and II simultaneously as they finally lead to
the same field models. The pair of SUSY potentials for case I reads (a,=a>1,
a=a—1)

Wl(a,, x)=atanh x +

cosh x’

(5.4)

W(a,,x)=(a—1)tanh x + :

cosh x

The corresponding first excited state of H is then given by

2b —b in(tanh
Yi(x)=N ((2(1— 1) tanh x + ) 200 arcs1_nl( aihxly : (5.5)
cosh x cosh™ " x
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Similarly, in case II we start with (¢,=a>1, a,=a—1, b=0)

b
W(a,, x) =a tanh x + e
(5.6)

W(al,x)=(a—l)tanhx+;1f—l,

and find

lﬁx(x)=N((2a—l)tanhx+b(é+ ! >>exp{—bx/(a—1))}.

a—1 cosh ! x 5.4)

In both cases it turns out that (5.3) can only be integrated explicitly for 5 =0.
Therefore, cases I and II again become identical. The resulting static solution reads

1
cosh? ! x

Gy (x) = ; (5.8)

where we have set aN=(1—a)/(2a—1) and f= —N(2a—1)/(a—1). The simple
relation (5.8) allows to find x = x(¢,,) for all values of @ > 1 and with

do sinh x
st _(1_
-4

=(1—a)¢““ Vsinh x

st

we obtain the field potential

2 132
0= (%) U5 g g ey, 0cg,e 69

There are at least two ways to continue the fractional power in the above expression
beyond the values taken by ¢,

(a—1)*
2

(a—1)°
2

Ui() = §(1—|g|er Ve, a>1, (5.10)

(1 —sgn g |g|r 1) g1, (5.11)

U2(¢) =

leading to two new families of unstable field potentials with, in general, fractional
powers of the field. Note that @€ R with a> 1. For the particular values a =2, 3
and a — oo, however, these reduce to polynomial potentials. For example, U, for
a=2 reduces to an unstable ¢>-theory, U,(¢) =1¢*1 —¢>). For the case a =3 the
other choice gives rise to the inverted double-well potential U,(¢) =2¢*(1 — ¢?). In
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the limit of large a, a — oo, we also recover the ¢*-model, lim, .. U,(¢)/a’=
5¢*(1 —¢). Finally, let us give the discrete spectrum of the fluctuation operator:

,=(a—12—(a—n), n=0,1,2, . <a (5.12)

In Fig. 4 we present the shape of the static solution (5.8) for « =2, 3 and 4. Figs. 5
and 6 show the corresponding unstable field potentials U, and U,, respectively.

B. Cases III and IV

For case III the starting pair of shape-invariant SUSY potentials reads
(ap=a>1,a,=a—1, b>0)

W(ag, x)=a—be ~, W(a,,x)=(a—1)—be ", (5.13)
and the first excited state of H is given by
Yi(x)=N((2a—1)—2be ~)e “ " exp{—be *}. (5.14)

Unfortunately, for none of the allowed potential parameters @ and b one can find
the corresponding static solution (5.3) in closed form.

Therefore, let us pass to the last case IV. Here the starting pair of SUSY potentials
is (ap=a,=a>0)

W(a,, x)= Wa,, x) =ax, (5.15)
which leads to
¥, (x) = 2Naxe 7, (5.16)
Hence the static solution in this case reads (a=1/2N, f=1)
¢.(x) =exp{ —ax?/2} (5.17)
and x>= —(2/a)In ¢,,. Therefore, the field potential can explicitly be computed,
Ulg, )= —ad; Ing¢, and is easily continued by taking the absolute value for the
argument of the logarithm:
U@¢)=—ad?in|¢|, a>0. (5.18)
The eigenvalues of the fluctuation operator are given by

U,=2a(n—1), n=0,1,2, ... (5.19)

Figure 7 gives the shape of the static solution (5.17) and the corresponding field
potential (5.18) for a=5.
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0.8

0.6

d’sl(-’f)

0.4

0.2

FiG. 4. The static finite-energy solution for the unstable field potentials corresponding to case I and
II for a=2 (—), a=3 (7~_) and a=4 (---)_

Ur(e)

Fi1G. 5. The unstable field potentials U,(¢) corresponding to cases I and II. Parameters are the same
as in Fig. 4.

1.4

1.2

1

0.8

= 0.6
o 0.4
0.2

0

-0.2

-0.4

-1.5 -1 -0.5 0 0.5 1 1.5

F1G. 6. The unstable field potentials U,(¢) corresponding to cases I and II. Parameters are the same
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FiG. 7. The static solution (solid line) and the corresponding unstable field potential (dashed line)
for case IV with a=>5.

VI. CONCLUDING REMARKS

In this paper we have used ideas of SUSY quantum mechanics to construct stable
and unstable field theory models in (1+ 1) dimensions which admit topological
non-trivial classical finite-energy configurations (solitary waves). The basic 1dea was
to start with families of one-dimensional quantum mechanical potentials such that
the corresponding Schrodinger-like eigenvalue problem is exactly solvable. These
families are provided by the recent investigation of shape-invariant systems within
the framework of SUSY quantum mechanics. Identifying the Schrodinger
Hamiltonian with the fluctuation operator for the static classical finite-energy solu-
tion of a (1 + I)-dimensional field theory we tried to construct the corresponding
field potential in a closed form. In doing so, we had to face restrictions on the
parameters of the starting SUSY potentials listed in Table L

For the case of stable field models, as discussed in Section IV, these restrictions
led us to only five explicit field potentials. Besides the known sine-Gordon, ¢* and

TABLE III

Stable Field Potentials Found in Section IV

Case Parameters Field potential Model

I+10I a=1, b=0 Uld)=1+cos ¢ sine-Gordon
a=2, b=0 U(¢) =%(1—¢*)? ¢*-theory
a=4, b=0 U(¢) = (4.14) New
Limiting case Ug)=1(1—a|¢])? Double-quadratic

1
2
111 a=1, bh>0 U(g) =143k |¢])  New

v none none none
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TABLE 1V

Unstable Field Potentials Found in Section V

Case Parameters Field potential Model
—1)?
[+I1  a>1, b=0 U,(¢>):(“ 5 ] P71 — |g| e+ De=D) New
. ._(‘1_1)2 2 ta+1)/a—1)
a>1, b=0 Us(¢) = 5 ¢(1 —sgn ¢ |¢] ) New
[11 None None None
v a>0 Ul¢)= —ad*In || New

double-quadratic model we found two new field potentials. These results are sum-
marized in Table III.

For the unstable field models a much larger range of parameters is allowed and
it leads to explicit field potentials. We have obtained two new families of field
potentials, U, and U,, associated with the SUSY potential W(x)=a tanh x, a > 1.
They contain as special cases the inverted double-well potential, a ¢°- and a
¢’-model. In general, however, these field potentials have fractional powers of the
fields. For the harmonic-oscillator SUSY potential W(x)=ax, a>0, a new field
theory with logarithmic interaction has been found. The results of our investigation
in Section V for unstable field theories are summarized in Table IV. Note that
in the case of unstable field models we have limited ourselves to only those with
one unstable mode. Clearly, our construction method based on SUSY quantum
mechanics can also be applied to systems with two or more unstable modes of the
fluctuation operator.

Finally, we would like to mention that field theories with non-polynomial inter-
action have been studied before [20] and it would be of interest to study the new
models found here from the point of view of renormalization, triviality, etc. [21].
The present approach may also be useful in finding new solvable non-linear wave
equations [22].
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